CALCULATION OF THE SELF-OSCILLATIONS ARISING
AS A RESULT OF THE LOSS OF STABILITY BY THE
SPIRAL FLOW OF A VISCOUS LIQUID IN AN ANNULAR
TUBE

A, L. Urintsev UDC 532.516

The spiral flow of a viscous liquid in an annular gap (formed by concentric cylinders) due to
the rotation of the inner cylinder and the axial pressure gradient is considered; the stability
of the flow is discussed in relation to small but finite rotationally symmetrical perturbations.

The theory of the stability of spiral flows is usually considered on a linear basis and considerable sim-
plifying assumptions are made; the perturbations are assumed to have rotational symmetry, the gap between
the cylinders is considered as being narrow, and the axial Reynolds number is regarded as small [1-5]. No
limitations were imposed on the axial flow in [6], in which the problem was solved by an asymptotic method
on the approximation of a narrow gap. An analysis of stability with no limitations imposed upon the width of
the gap, based on the equations of an ideal liquid, was presented in [7]; the case of cylinders slipping relative
to one another and nonrotationally symmetrical perturbations was considered in {8}, The influence of an axial
flow on the stability limits was studied experimentally in [9-14]; self-oscillations in an annular tube were ob-
served in [11, 12].

A detailed numerical study of the stability of spiral flows was presented in [15, 16]; in addition to the
rotationally-symmetrical case, three~dimensional oscillations were considered, andthe neutral curves were
calculated over a wide range of variation of Reynolds numbers, gap widths, and longitudinal wave numbers,
A strict proof of the existence of a situation, periodic in time, arising as a result of the loss of stability of
the spiral flow due to rotation and a very slow translational motion of the cylinder was presented in [17]; one
example of the generation of convective self-oscillations of the flow of a viscous liquid in a cylindrical tube
was considered in [18].

In this paper we shall use the Lyapunov—Schmidt method [17, 19~21] in considering the case of a narrow
channel, in which axisymmetrical perturbations are the most dangerous [16]; we shall calculate the amplitude
of the secondary transient laminar mode and study its stability for various values of the Reynolds number
Rey, constructed from the axial velocity. We shall show that, if the parameter Re, <40 and the Reynolds num-
ber of the rotational component of the spiral flow exceeds the critical value given by the linear theory, soft
excitation of a stable, self-oscillatory flow having the form of waves traveling in the liquid along the axis of
the cylinders will occur. The main spiral flow will then lose stability.

1, Presentation of the Problem

Let a viscous, incompressible liquid of density p with a kinematic viscosity v occupy the space between
two concentric cylinders of radii r; andr, (r; <r,). The inner cylinder rotates uniformly with an angular ve-
locity T, the outer one remains stationary. We take r,—r1y, (ry—ry)%/v, p(ry—ry)? as units of length, time, and
mass and introduce a cylindrical coordinate system r, 8, z', inwhich the z' axis coincides with the axis of the
cylinders. As we are interested in time-periodic modes of flow possessing rotational symmetry (8 /30= ()
and a specified periodicity along the z' axis, we shall seek solutions to the dimensionless hydrodynamic equa-
tions in the Gromeko— Lamb form

W'/t + o X v +rote +gradh’ =0, 0 =rotv’, divv =0, (1.1)
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solely dependent upon the variables r and z=2z"'—c¢ 't (c' isthe unknown phase velocity of the waves). It was
verified in [17] that in the axisymmetrical case every isolated limiting cycle of the system (1.1) admitted a
representation of this kind, in view of the invariance of the equations in relation to shear z'—~z'+const. The
solutions which we are seeking should be 27/a periodic with respect toz (¢ is the specified wave number),
We see from the equations of motion that the total pressure gradient, averaged over the period, does not de-

pend on the transverse coordinate r, and we assume it as prespecified:
402 B
o a8
TN | —l dz = const.
- —:'[,a

The foregoing conditions are satisfied by the z-independent steady-state solution (spiral flow)

v = V() = (0, Vo, V.); & = Q(r) = (0, Qp, Q,) = rot V: (1.2)
I = H = constz 0,5 (Vg + Vi)~ [ Vairdr
with velocity components
Vo = Reo(dyir — dor); V. = Re.ldy(r* — £3) — d, In (r/8)],
E=r/n—n), d =8 +28), d = (1 + &)d,,
d4=2/[ iﬁln(i+1,~] dy = dy L),

11—‘: T =

where Reg =T'r(ry—ry)/v is the Reynolds number of the azimuthal component Vg constructed from the max-
imum velocity T'r; and the width of the channel; Re, is the Reynolds number of the axial flow V, based on the
viscosity v, the channel width r,—r;, and the axial velocity averaged over the cross section of the annular
tube, so that we have the equation

1+8
2a | Vyrdr = a((1 + &° — & Re,,
§
in the case of a narrow gap ({— «) the profile VZ passes into parabolic form V, =6 Re,y(1~y), y=r—¢.
Seeking the periodic modes branching from solution (1.2), let us substitute the following inte Eq. (1.1):
=V--v(ra. o =2 oz h =H-=-krz), ¢ =cRe,;

in order to determine the perturbations of v, h,& and the constant ¢ we obtain a nonlinear problem with re~
spect to the eigenvalues
—c Redr/dz -~ @Nv — o \V —rote - grad 2 = vXo, @ = rot v,
wE oh (1.3)
divv=0, | Sodz=0,v="0(=51+¥,

—'a

for which it is required to find a nonzero solutions 2n/«@ periodic in the coordinate z.

2. Lyapunov — Schmidt Series

Let Reg be the critical value of the parameter Reg. Letus put Reg=Rey+ €%, and regarding €as small, seek
the solution to the problem (1.3) in the form of [19]:

|/a

(v, by @) = X eM(vy, hy, @), c = 2 ghey 2.1

-k

Ed
X
<

We then arrive at a series of recurrence problems (k=1, 2, 3...)

—cy Re, dv,/dz + Q,Nv, — 6, XV, = rot @, + grad hy, = f,,
rot v = o, divvy =0,v, =0 (r.: E, 1+ 8), 2.2)
2472 .
——dz =0, (vas by 0p), = (Vi Iy 03)], *%,a
-~/

with known right-hand sides. For example,
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=0, f, = v, ¢ @ + ¢, Re,dv,/0z,
fs = vy X©, = v, X@, + ¢, Re,dv,/0z +¢; Re, 0v,/0z — (Q, Xv, + @, xV,).

Here we have introduced the notation

V() = VIR€G=R€‘0 s V] =V Reg=11 QO = rot VD’ Ql = rotVl. :
Re,=0 .

When k=1 we obtain a linear homogeneous problem for calculating the critical parameters Re,, ¢, and the
eigenfunction. The solution to this problem may be sought in the form

vy hyy @) = B(@(y)eirz +- @*(y)e~iaz),
(I):(q)agiy)vy=r—§’ (2'3)

in which the unknown real constant 8 (amplitude of the self-oscillations) may be regarded as positive, since
this state of affairs may always be achieved by moving the origin along the z axis. The asterisk denotes the
operation of complex conjugation. Separating the variable z, we arrive at a system of six differential equa-
tions of the first order: '

Df(‘r = —q¢; — I'OL({:; Dq"e = Y. — ¢o; Dq‘: = i’xffr — Vgt

Dg = inc, Re; ¢, -+ ioyg— A, Dy == iacy Re, ¢ — fah — gy, — AL (2.4)
Dy.= iuy, — iacg Re; ga + Ag, ¥ = —ioqa, 9 = (3 -+ ), )

D =d/dy, A= Q,xqg -y X V,.
for which it is required to seek a nonzero solution satisfying the boundary conditions ¢p=0g=0,=0 (y=0, 1).
By way of normalization it is convenient to take the condition vy, =1 at y =0, For this choice of normalization
the quantity 28 € may in the case of small £ be interpreted as the amplitude of the pulsations of the tangential
stress prg on the inner cylinder,

In order to construct the conjugate problem {19] we scalar-multiply the first equation of (2.2) for k=1
by the solenoidal 2n/a periodic (in z) vector ¥, which vanishes at r=£, 1+¢£, and integrate over the rectangle
{e=r=1+¢, ~1/a=z =r/a} with weight r. If we then integrate by parts, change the derivatives in v, h;, w,
to ¥, and introduce the auxiliary variables P and A, we arrive at the conjugate problem

¢, Re, 0¥/z L ¥ Q, L grad P - rot A =0, div¥ =0,
Tot W - VoXW = A, ¥ =0 (r=E 1--3).
which after separation of the variable z(¥, P, A) = (¥, p, Meiaz reduces to the system

D‘lpr = "‘ialpz - {[\Pﬁ D‘L‘e = }-: - Q\I‘o - Vﬁ,ﬂ"l“r;
Dy, = iag, — kg = Vol Dp = ioke — fucy, Re, §, + Qe — Qo083 (2.5)
Dig = —iap — qhg — fac, Re, P, — Quoth,: )

D}, = iad, + iocy Re,Po — Qobpy 2y = Vg, — (i + V)0
with boundary conditions ¥p=¢45=9, =0 (y =0, 1) and the additional normalization condition A, =1 at y=0. The
condition for the solubility of the inhomogeneous problem (2.2) takes the form
oo 4

U T s o) b () o ™ rdyds =0 (k= 2.3.4....). 2.6)

—
Applying this to the case of k=2 and considering that by virtue of (2.3)
f, = fue; Re, (eir'q — e—iwrg®) = P Xy* -+ qF iy FePo@Xy 4 e-2iwg® Mp¥), 2,7)

we find that ¢; =0 if

——

I= (9, §) ray

=]

is nonzero. The latter condition was verified numerically, and it was found to be satisfied in the cases under
consideration. The solution of problem (2.2) for k=2 may, in accordance with (2.7), be sought in the form

(v, hay ) = P2LU(W, S, L) & (w, s, 1) e?ioz 1 (w*, s¥ 1%)e—z], 2.9)
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TABLE 1

|
Re; ] o l Reg { ra | B I tie, ‘ 113 Realo,
i i
4,30 5.13 266,110 11506 19.55 535 $.94
11.3 ENY 308.82 - 11683 19,73 — 240 0.1y
17,8 3.15 329,31 {1664 20462 — 1,33 a.61
29,2 3.20 383,62 11606 20.78 4.98 0.7
39,7 323 450.31 11543 21,43 2753 121

We note that the right-hand side of Eq. (2.8) should be supplemented with the solution to the one-dimensional
problem &, having a certain numerical factor 8 ; however, from the condition of solubility for k=4 we find
that B4=0. Substitution gives the following equations for the coefficient of the zero harmonic;

DWy=L.— qWe; DW= —Ly, Wy =W.=0(y = 0.1
DLy = B, — qLy; DL, = —Bg; W, = L, = (:
DS = B, — Qul ', + Quulo — TouLy — Vel
B=gXy*+¢*<y, S=0(y=1.
The additional boundary condition for S establishes the arbitrary constant in the definition of the total pressure.

We seek the coefficients of the second harmonic by solving the boundary-value problem

Dw, = —qie, — 2igw,; Dwy = 1, — quwg; Du, = 2iauw, — lg;

Ds = 2iale, Re, w, +— lg) — Cpi Dl = 2infc, Re. w, — §) — yly — C; (2.10)

Dl = 2ia{l, — ¢y Re,wy) — Cy, wr = wy = 10, == 0 {y = 0, 1),
‘ I, = —2ioury, C= QoXw + 1V, — ¢y,
Using (2.6) with k=3, we obtain the equation
iaec, Re J, 4 B*1, == 1,.
1.
I, = ‘\ (¢ L—- Wiy q* Ol — w i 4% §irdy.
&
!
13 = '\ (Ql R T X Vl, ‘lt)rdy,

h)

and on solving this we find the real constants 8 and c,:

Lin (151 3)
o Re, Real (1,15}
Computer calculations showed that for the values of the parameters under considerationthe quantity under the root

was positive. This indicates [19, 20] that the series (2.1) converges and for small £ the self-oscillatory solution
so constructed, existing in the hypercritical region Reg =Rey—¢ 2 is unique.

=) Real (I 1[,)/Real (I,I3) ,c,=

In order to study the stability of the spiral flow and the branching wave mode in the class of perturba~
tions with period 27/a in z', weuse Eq.(1.1)twicetosetup equations in variational form, and we seek the ve-
locityvectoras u(r, z'—c¢; Re, t) exp ot in the first case and as u'(r, z'~c't) exp ¢'t in the second. This leads
to the following problems for the eigenvalues of the exponential indices ¢ and o',

[ ou — ¢, Re. du/dz - Q> u -~ roft u~V - grad y — rot rot u =0,

| divu=0,u=0(0(=%81--%, 7z —¢, Re-1):
| g'u’ —cguds — (@ — @) u’ = rotu (V- v) - grad g+
| +rotrotu’ =0 divae =0, u' =0 (r=§ | — %) =2 — ¢t

Since we are interested in the behavior oftheperturbation for a slight increment over the critical state,
we may seek solutions to the foregoing problems in the form of series in € [20] and arrive at the result

0= 0,82 - 0(e2); 0 = ooe? - 0(e?),

0, = — I,/I;, Realos = — Real g,
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in which the existence of a positive real part in the coefficient o, or o'y indicates the instability of the
corresponding flow,

3. Numerical Results

Calculations of the self-oscillatory situation were carried outon the ODRA-1204 computer for a gap of
£=50 and various Rez; numbers. First we used the Newton method to refine the critical values of the param-
eters ¢y, Re, found in [15); the wave number was chosen from the consideration of reducing the critical Rey-
nolds number Rey(@) to a minimum. Then we solved the boundary-value problems (2.4), (2.5), (2.9), and (2,10)
by a complex version of the orthogonalization method {22, 23]; the calculation of the integrals I, L, I3
amounted to obtaining a solution of the Cauchy problem from the outer to the inner cylinder, with the paral-
lel integration of a larger and larger system of differential equations by the standard Runge —Kutta method
of the fourth order, with automatic step selection.

For moderate axial Reynolds numbers the results shown in Table 1 enable us to interpret the solution
here obtained as the stable wave motion of the liquid due to the removal of the secondary Taylor vortices by
the axial flow,

The author wishes to thank V. I. Yudovich for interest in this work.
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OSCILLATIONS OF AN IDEAL LIQUID ACTED UPON
BY SURFACE-TENSION FORCES. CASE OF A DOUBLY
CONNECTED FREE SURFACE

V. R. Orel UDC 532.593

Many articles have appeared on the problems of small oscillations of an ideal liquid acted upon
by surface-tension forces. Oscillations of a liquid with a single free surface are treated in {1,
2]. Oscillations of an arbitrary number of immiscible liquids bounded by equilibrium surfaces
on which only zero volume oscillations are assumed possible are investigated in [3]. We con-
sider below the problem of the oscillations of an ideal liquid with two free surfaces on each of
which nonzero volume disturbances are kinematically possible, The disturbances satisfy the
condition of constant total volume. A method of solution is presented. The problem of axisym-~
metric oscillations of a liquid sphere in contact with the periphery of a circular opening is con-
sidered neglecting gravity. The first two eigenfrequencies and oscillatory modes are found.

§1. Supposeacertainvolume Q of an ideal liquid bounded by solid walls of a container 8 and two free
surfaces Z; and 3, (Fig. 1) is in a state of stable equilibrium; p is the density of the liguid, and oyand o,are
the surface tensions. The external field of body forces has the potential II.

We consider small oscillations of the liquid about the equilibrium position. We denote by n;(¢) the
normal to the undisturbed surface Z; (i=1, 2} at the point £ directed outward from the region Q, and by u; (¢, t)
a small displacement along nj at time t =0, We assume that the displacement uj(¢, t) is a twice continuously
differentiable function of the parameter £(€Z;). We denote by D; the set of such functions. Let D=D; XD, be
the space of all pairs of functions {u,, u,f where uj € Di. We usethe vector notation u ={ uy, uz} for the ele-
ments of the set D, We define the scalar product in D (u,v <D)

(u, v) == D ugd S b wed X
< N

Py Y

We introduce the displacement potential $(q, t}, g ¢ todescribe small oscillations of an ideal liguid [4].
For any t =0 the potential ® is a solution of the problem

AD == U, e () {1.1)
The necessary condition for the solvability of the inner Neumann problem (1.1) is the conservation of
volume [5]

(4w = _i’ 0, d Xy~ }I\“ X,y =0, (1.2)

-1 -
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